Problem 5134. Given isosceles triangle $\triangle ABC$ with cevian CD such that $\triangle CDA$ and $\triangle CDB$ are also isosceles, find the value of

$$\frac{AB}{CD} - \frac{CD}{AB}$$

Proposed by Kenneth Korbin, New York, NY

Solution by Ercole Suppa, Teramo, Italy

Denote $\angle BAC = x$. Since $\triangle CDA$ is isosceles we have $\angle DCA = x$. The exterior angle theorem yields $\angle BDC = 2x$ and this implies that $\angle ABC = 2x$. Therefore, since $\triangle ABC$ is isosceles, we have $\angle BCA = 2x$. Thus

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 \Leftrightarrow $5x = 180^{\circ}$ \Leftrightarrow $x = 36^{\circ}$

By using the sine law and bearing in mind the known formulas

$$\sin 36^{\circ} = \frac{1}{4}\sqrt{10 - 2\sqrt{5}}$$
 , $\sin 108^{\circ} = \frac{1}{4}\sqrt{10 + 2\sqrt{5}}$

we obtain

$$\frac{AB}{CD} - \frac{CD}{AB} = \frac{\sin 108^{\circ}}{\sin 36^{\circ}} - \frac{\sin 36^{\circ}}{\sin 108^{\circ}} = \frac{\sin^{2} 108^{\circ} - \sin^{2} 36^{\circ}}{\sin 36^{\circ} \cdot \sin 108^{\circ}} = \frac{\frac{5+\sqrt{5}}{8} - \frac{5-\sqrt{5}}{8}}{\frac{\sqrt{80}}{16}} = \frac{\frac{\sqrt{5}}{4}}{\frac{\sqrt{80}}{16}} = 1$$

This completes the solution.