Problem 5134. Given isosceles triangle $\triangle A B C$ with cevian $C D$ such that $\triangle C D A$ and $\triangle C D B$ are also isosceles, find the value of

$$
\frac{A B}{C D}-\frac{C D}{A B}
$$

Proposed by Kenneth Korbin, New York, NY
Solution by Ercole Suppa, Teramo, Italy

Denote $\angle B A C=x$. Since $\triangle C D A$ is isosceles we have $\angle D C A=x$. The exterior angle theorem yields $\angle B D C=2 x$ and this implies that $\angle A B C=2 x$.

Therefore, since $\triangle A B C$ is isosceles, we have $\angle B C A=2 x$. Thus

$$
\angle A+\angle B+\angle C=180^{\circ} \quad \Leftrightarrow \quad 5 x=180^{\circ} \quad \Leftrightarrow \quad x=36^{\circ}
$$

By using the sine law and bearing in mind the known formulas

$$
\sin 36^{\circ}=\frac{1}{4} \sqrt{10-2 \sqrt{5}} \quad, \quad \sin 108^{\circ}=\frac{1}{4} \sqrt{10+2 \sqrt{5}}
$$

we obtain

$$
\begin{aligned}
\frac{A B}{C D}-\frac{C D}{A B} & =\frac{\sin 108^{\circ}}{\sin 36^{\circ}}-\frac{\sin 36^{\circ}}{\sin 108^{\circ}}=\frac{\sin ^{2} 108^{\circ}-\sin ^{2} 36^{\circ}}{\sin 36^{\circ} \cdot \sin 108^{\circ}}= \\
& =\frac{\frac{5+\sqrt{5}}{8}-\frac{5-\sqrt{5}}{8}}{\frac{\sqrt{80}}{16}}=\frac{\frac{\sqrt{5}}{4}}{\frac{\sqrt{80}}{16}}=1
\end{aligned}
$$

This completes the solution.

